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ABSTRACT 
 

In damage detection the number of elements is generally more than the number of measured 
frequencies. Consequently, the corresponding damage detection equation is undetermined and 
thus has infinite solutions. Since in the damaged structures most of their elements remain 
healthy, the sparsest solution for the damage detection equation is mostly the actual damage. 
In the proposed method, the damage equation is first linearized in various ways using random 
finite difference increments. The sparsest solutions for created linear system of equations are 
derived using basis pursuit. These solutions are considered as the first population for a 
continuous genetic algorithm to obtain the damage solution. For investigation of the proposed 
method three case studies are considered. Simulation results confirm the efficiency of the 
proposed method compared to those found in the literature. 
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1. INTRODUCTION 
 

Identifying structural damage by using nondestructive test data has been investigated by many 
researchers during the past two decades. Vibration testing is the most widely used method for 
identifying the parameters of structures. Most existing parametric methods for dynamic 
identification make use of frequencies and mode shapes and are based on finite element (FE) 
model updating [1-3]. Mostly, the damage parameters are identified by equalizing the 
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responses of analytical model to the measured responses. In this way, the problem is modelled 
as a nonlinear system of equations in which the damage parameters should be determined. 
Some common methods for solving the system of equations are pseudo-inverse, least square, 
non-negative least square and optimization methods. Genetic algorithm (GA), as an 
optimization method, has been frequently employed to solve the corresponding system of 
equations for damage detection [2].  

Au et al. [3] by expansion of incomplete mode shapes obtained energy quotient difference 
to find the most potentially damaged elements. Then, they detected the damages of the limited 
elements by micro genetic algorithm. For large scale structures, they proposed a two level 
optimization method in which the subset of the damaged elements was searched. 

Gue and Li [4] proposed a two-stage method to determine the location and extent of 
multiple structural damages. At the first stage, the damaged sites were localized using the 
evidence theory by frequencies and mode shapes data. At the second one, a micro search 
genetic algorithm was employed to detect the true sites and extents. He and Hwang [5] first 
reduced the design variable of damage detection problem by a grey relation analysis and 
furthermore, introduced an improved real coded genetic algorithm with a new mutation 
operator which merges the merit of simulated annealing. Naseralavi et al. [6] improved 
genetic algorithm to detect damages and cracks. They embedded two additional operators in 
GA after the usual genetic operators to restrict the design variables. The first additional 
operator improved the genetic algorithm using the sensitivity analysis for each individual. The 
second one eliminated the small damage variables after each several generations.  

For solving the sparse solution of an undetermined linear system of equations Orthogonal 
Matching Pursuit (OMP) and Basis Pursuit (BP) are well known [7]. Since the system of 
equations for damage detection is slightly nonlinear only, OMP and BP (themselves or their 
ideas) have been employed. Meruane and Heylen [8] adopted the above concept of BP 
through adding the summation of damage variables as a penalty function to the conventional 
objective function. Friswell and co-workers frequently employed OMP for damage 
identification with a new name as forward selection. They confirmed the effectiveness of 
OMP [9-11] for damage detection. To select the number of damage parameters in OMP, 
Friswell et al. employed Efroymson’s criterion in Ref. [10]. In that work, OMP is extended to 
the case with multiple measurement sets using angles between subspaces. Friswell et al. [11] 
also extended OMP for parameter groups. OMP [12] was applied to identify the damages of 
bearings effectively in Ref. [12]. Yang et al. [13] presented a procedure which combined BP 
and a feed forward neural network classifier to detect the fault of rolling element bearings. 
Also, the results of BP and MP were compared using vibration analysis. The comparison 
demonstrated that basis pursuit feature-based fault diagnosis was more accurate than 
matching pursuit feature-based fault diagnosis for detecting the faults. Practically, the 
measured responses are noisy. The Basis Pursuit De-Noising model (BPDN) is commonly 
used in noisy linear system of equations [14-16]. Many researches study the application of 
BPDN for compressed sensing [17-19]. 

In this paper, a new method is presented to detect the structural damages. First, the 
sensitivity matrices of structural responses with respect to elemental damages are evaluated 
using the finite difference method with various finite difference increments. Then, various 
systems of equations are formed for the structure and solved by BP. The obtained solutions 
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are considered as the first population for a continuous genetic algorithm. In an optimization 
process the genetic algorithm improves the results of the first stage to the true damage. The 
efficiency of the proposed method is compared with the algorithms in the literature.  

The organization of this paper is as follows: The linearization of damage detection is 
discussed in section 2. The Basis Pursuit is described in section 3. Genetic algorithm is 
explained is section 4. The proposed algorithm and three illustrative case studies are presented 
in sections 5 and 6, respectively.  Finally, the conclusion is given in section 7.  

 
 

2. LINEARIZATION OF DAMAGE DETECTION 
 

Damage detection problems can be formed as a set of equations. To solve the equations, 
damage variables should be found in a way to best equalize the analytical and measured 
responses of the structure. Mathematically, the set of equations can be expressed as: 

 
 ( ) d =R R X  (1) 

 
where ( )T

1 2 ,   ,... nx x x=X  is the vector of damage variables and n is the number of 

structural elements. ix is the ratio of the stiffness lost in the damaged element to the stiffness 

of intact state for the ith element that is called damage ratio. ( )1 2

T
 ,   , ... 

md d d dr r r=R  is the 
vector of m structural responses of measured damage structure. The vector of m responses of 
analytical model is denoted by ( )T

1 2( ) ( ) ,  ( ) , ... ( )mr r r=R X X X X .  
Practically for modal data, the number of structural responses, m, is less than the number 

of elements, n, and thus, the problem is undetermined. Hence, the solution of this problem 
fails to be unique. To find the true unique solution, a constraint should be inserted to the 
problem. Since in damage cases most of the structural elements are still remained healthy (a 
few elements are damaged), the true damage solution is spars (it has a few nonzero entries in 
comparison to its dimension). This constraint helps us to find the desirable solution of damage 
detection problem. Thus, the main object is to find the sparsest solution of Eq. (1). 

Since R(X) is slightly nonlinear, it is expected that the sparsest solution of ( )d =R R X  be 
close to the sparsest solution of its linear version. The first order approximation of Eq. (1) is as 
follows: 

 ( ) ... ,d h d h
∂

= = + + ⇒ − = ∆ ≅
∂
RR R X R X R R R SX
X

 (2) 

 
in which, hR , X  and S are the response vector of the healthy structure, damage vector and 
sensitivity matrix of structural responses, respectively. In the next section we will see how to 
find the sparsest solution of a linear system of equations. 
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3. BASIS PURSUIT (BP) 
 

Consider the following linear system of equations: 
 

 1 1= ,m n n m× × ×A X b  (3) 
 

where X is the vector of unknowns. This linear system of equations stands for  = ∆SX R . For 
undetermined problems ( m n< ), Eq. (3) has infinite solutions among them the sparsest one is 
mostly desired. For a vector such as X, pl -norm ( 0,1, 2,...)p = are defined as follows [12, 13]:  

 

 

1/

1

1,...,

 , 0

max  ,  

pn
p

i
ip

i n j

x p

x p
=

=

 
< < ∞ =  

 = ∞

∑X  (4) 

 
where .  denotes the absolute value. Consequently, 0X  ( 0l -norm) is the number of non-
zero entries of X. Mathematically speaking, we can write: 

 
 { }0 1  : 0 ,ii n x= ≤ ≤ ≠X  (5) 

 

1X  is the summation of the absolute values for components of X, i.e. 

 1
1

.
n

i
i

x
=

= ∑X  (6) 

Also, 2X ( 2l -norm) is equal to: 
 

 2 2 2
1 22 ... ,nx x x= + + +X  (7) 

 
To find the sparsest solution of Eq. (3), 0l -norm of X should be minimized. The solution 

with the smallest 0l  is represented as: 
 

 0 : 0arg min .== X AX bX X  (8) 
 
Unfortunately, 0l  minimization is not a convex optimization problem. In fact, it is generally 

an NP-hard problem [29]. That is, Eq. (8) requires beyond a polynomial time to be solved 
through 0l  minimization.  

The solution with minimum 1l  is denoted as: 
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 1 : 1arg min .== X AX bX X  (9) 
 
It can be shown that the solutions with minimal 0l  and 1l ,  namely 0X and 1X , are mostly 

equal. Thus, Eq. (8) can be solved through 1l  minimization instead of 0l  minimization. 1l  
minimization is a convex optimization problem and can be solved in polynomial time. This 
strategy is called Basis Pursuit (BP) [11]. Equation (9) is an optimization with a linear 
objective function, 1X , and linear equality constraint =AX b . Thus Equation (9) can be 
solved through a Linear Programming (LP). Generally, simplex method is an efficient tool to 
solve linear programming problems [14].  

Note that computation of the solution with minimum 2l -norm, 2 : 2arg min ,== X AX bX X is 

much easier rather than 1X . The solution with minimal 2X  can be achieved by 
+=X A b where the superscript “+” represents the Moore-Penrose pseudo inverse. However, 

unfortunately 2X  is close to 0X  and it is not generally equal to that. 
Noisy version of Eq. (3) is expressed as = +AX b z , in which z is the noise vector. It is 

assumed  2 ε≤z , where ε  is an upper bound for noisiness. The 0l  minimization problem in 
the noisy state can be expressed as:  

 
 0 2

min      subject to   ,ε− ≤
X

X AX b  (10) 

 
which is similar to Eq. (8) where the equality constraint is relaxed to an inequality constraint. 

The noise vector is simulated as σ ′= ×z z  where σ  and ′z are the noise level and the 
standard white Gaussian noise, respectively. On the other hand, the 0l -norm can be replaced 
by the 1l -norm for pursuing the strategy of convex relaxation: 

 
 1 2

min      subject to   .
x

ε− ≤X AX b  (11) 

 
This strategy is called Basis Pursuit De-Noising (BPDN) [11]. Lagrangian for this 

minimization problem is written as follows: 
  

 
2

2

1

1min    .
2x

λ− +AX b X  (12) 

 
In fact, Eq. (12) can be solved by quadratic programming. The solutions of Eqations. (11) 

and (12) are the same for an appropriate 0λ > . The parameter λ  makes a balance between 
minimizing error and sparsity. λ  is set to the value 2log( )p pλ σ=  where p is the 
cardinality of A [14].  
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4. GENETIC ALGORITHM 
 

Genetic algorithm is an efficient meta-heuristic optimization tool which mimics the population 
enhancements during the generations. In the conventional genetic algorithm (discrete version) 
each solution point is coded as a binary string. But continuous genetic algorithm (CGA) uses 
directly the variables themselves which is better for optimization problems with continuous 
variables. Thus, coding and decoding process is not needed in CGA. Generally in GA (or CGA), 
each individual of the population is called chromosome and each variable is called gene. In 
genetic algorithm feasible initial population is created randomly at first. The objective function 
for the individuals of the current population is calculated. Then, it is decided which 
chromosomes in the current population are fit enough to survive and possibly reproduce 
offspring in the next generation in selection operator. The individuals with better fitness are 
copied more than others. Reproduction process usually consists of two main operators: 
crossover and mutation. Crossover simulates marriage and generation of offspring by 
combining two individuals as parents. Mutation is an operator which simulates biological 
genetic mutation by changing some genes randomly. The algorithm is generally stopped based 
on the maximum number of generations [9].  

 
 

5. THE PROPOSED ALGORITHM: BP-CGA 
 

Practically, in damage detection via modal data the number of measured structural responses, 
m, is less than the number of elements, n. Hence, the damage detection problem is 
undetermined and its solutions make an n m−  dimensional subspace in nR . Usually, the 
number of damaged elements is a few and most of the elements are healthy. Hence, 

0 n<<X  and thus it is implied that the solution with highest sparsity is the best answer to 

the problem. To find the sparsest solution, the 1l -norm is minimized (basis pursuit).  
Conventionally, BP is used for linear system of equations while the damage detection problem is 

a nonlinear system of equations. Linearization error for Rd = R(X) can be considered as an 
unbiased noise. Also, the damage detection data is practically noisy. Therefore, in damage detection 
we have to deal with a noisy version of SX=∆R. However, practically the linearization error and 
noisiness amount is insignificant. In other words, BP results in an approximate solution for damage 
problem which is near enough to the exact solution. If we generated the first population uniformly 
over the search space, CGA would converge to one of the many solutions of Eq. (1) which is not 
essentially the true damage solution. However, BP part helps to produce the first generation near 
the exact solution. Therefore, when CGA begins with such a population, it will converge to the true 
damage solution.  

The method consists of two main parts as follows: 
1) Generation of the first population:  

For production of each individual in the initial population, first the vector 

1 2( , ,..., )j j j j
nε ε ε=ε is produced in which ; 1,2,...,j

i i nε =  are random numbers in the 

interval [ ]0,1 . The entries of this vector are used as the finite difference increments for 
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creating the columns of sensitivity matrix of the structure as follows: 
 

 ,i

j
d hj

i j
iε

−
=

R R
S  (13) 

 

where 
i

j
dR is the structural responses for the jth individual when the damage ratio of the ith 

element is equal to j
iε  and the other elements are considered healthy, i.e. 

th entry

(0,0,..., ,0,..,0)

i

i

j j
d iε

↑

=R . j
iS  is the ith column of the jth sensitivity matrix corresponding to 

the jth individual. Therefore, sensitivity matrices of the individuals are considered as 

1 2, ,..., ; 1,2,...j j j j
n chj N = = S S S S , where chN  is the population size. The 

corresponding system of equations are ; 1, 2,...j j
chj N= ∆ =S X R . By solving the 

sparsest solution for these equations through employing BP, the first population of CGA is 
generated. Using various finite difference increments for linearizing ( )d =R R X , the 
nonlinearity problems of ( )R X  is overcome.  
2) Continuous Genetic Algorithm (CGA):  

CGA improves the approximate damage solutions in the first population to the exact one. 
The objective function for CGA is considered as 2( )d −R R X .  

Figure 1 shows the flowchart of the proposed algorithm. In this flowchart, the number of 
generations is denoted by gN . In the next section, we will see several test examples to show 
the effectiveness of BP-CGA. 

A 

 
(Generation 
of the initial  
population)  

CGA 

A 1,  . 1,  Set , ch gj Gen N N← ←  

Start 

Cross over 

Mutation 

. 1 .Gen Gen← +

 

Yes 

. ?gGen N=

No 

Fitness evaluation 

Selection 

Generate jth random 
vector jε  

Produce the ith column of the 
sensitivity matrix by the ith entry 
of vector jε  as: 

i
d

i j
i

h

ε

−
=

R R
S  

1j j← +  

Solve  
d h− =R R SX   via 

BP to obtain the jth solution  

No j=  chN ?  Stop 

Yes 

 
Figure 1. The flowchart of the improved CGA algorithm 
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6. CASE STUDIES 
 

In this part, the proposed method is verified by three different case studies. Each numerical 
example is investigated in both cases of noise-free and noisy data. The ith noisy response is 
simulated by (1 )

idrσγ+ , where σ is the noise level and γ  is a random number in the interval 

[ 1, 1]− . In the following case studies, damage is simulated by reductions in Young’s modulus 
of the damaged elements. To demonstrate the efficiency and accuracy of the proposed method, 
the results are compared with the results of CGA-SBI-MS algorithm [6]. An index called 
error in detection is defined as 

2dED = X- X , where 
dX  represents the actual damage vector [6]. 

In the following case studies, for genetic algorithm, the population size, the crossover and 
mutation probabilities are set to 50, 0.8, and 0.015, respectively.      

 
6.1. A cantilever beam 

A fifteen-element cantilever beam is simulated to illustrate the efficiency of the proposed 
method. This structure has been previously studied by Koh and Dyke [20]. The geometrical 
and physical properties are as follows: the length of beam is 2.74 m; the elasticity modulus is 

11 22 10 N / m× ; the thickness and width are 0.00635 and 0.0760 m, respectively. The 
elements are numbered from the fixed end as follows:  

 

 
Figure 2. A 15-element cantilever beam  

 
The 4th and 12th elements of the cantilever beam are assumed to be damaged by the extent 

of 30%. The first five frequencies are used to detect the damaged elements.  
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Figure 3. The first stage results for 15-element cantilever beam: (a) damage identification results 
without noise (b) damage identification results with 1% noise 

 
Figure 3 shows the output of BP part for generation of the first population in both noise-

free and noisy frequencies. As it is observed, the BP part can successfully generate the first 
population of CGA near to the true damage. This point is very helpful by quadratic 
programming converging of CGA algorithm to the actual damage.  
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Figure 4. Solution results for 15-element cantilever beam without and with 1% noise: (a) damage 
identification results (b) convergence history of error in detection (c) convergence history of 

fitness function  
 
The results of CGA part are presented in Figure 4. As it can be seen from Figure 4(a), the 

damage elements and ratios are approximately detected by BP-CGA. This method can exactly 
identify the damages similar to CGA-SBI-MS in noise-free cases. But the performance of BP-
CGA is better than that of CGA-SBI-MS in noisy data. As it can be seen CGA-SBI-MS 
wrongly reports element 15 as the damage elements. Figures 4(b) and (c) show the 
convergence history of errors in detection and fitness function during the optimization process. 
In order to cancel out the stochastic nature of optimization process, the algorithm is 
independently run twenty times and the average of results is given in Table 1. By comparing 
the damage detection results of the proposed method and CGA-SBI-MS, it is revealed that the 
proposed algorithm has a better performance in noisy data.  
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Table 1. The average results for twenty times running for 15-element cantilever beam 

Element number Damage ratio BP-CGA CGA-SBI-MS 
4 0.3 0.3 0.25 
5 0 0 0.14 
12 0.3 0.28 0.28 
15 0 0 0 

 
6.2. A planar truss 

A 31-bar planar truss which has been studied by Messina et al. [21] is selected to demonstrate 
the capability of the proposed algorithm. The structure is shown in Figure 5. The damages are 
to be detected by using the first 10 frequencies. 

 

 
Figure 5. A 31-bar planar truss 

 
The 11th and 25th elements of the planar truss are considered to be damaged by the extent 

of 25% and 15%, respectively. The output of BP for generation of the first population is 
shown in Figure 6. As it can be seen in Figure 6, the proposed method generates the first 
population of CGA in both noise-free and noisy data close to the actual damage. 

 

50
40
31
22

13

4 0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

1471013161922252831

D
am

ag
e 

ra
ti

o

Element no.  
(a) 



S. Gerist, S.S. Naseralavi and E. Salajegheh 

 

312 

50
40
31
22

13

4 0

0.1

0.2

0.3

0.4

1471013161922252831

D
am

ag
e 

ra
ti

o

Element no.  
(b) 

Figure 6. The first stage results for 31-element planar truss (a) without noise (b) with 1% noise 
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Figure 7. Solution results for the 31-element planar truss: (a) damage identification results (b) 
convergence history of error in detection during the process (c) convergence history of fitness 

function  
 
Figure 7(a) depicts final results for BP-CGA and CGA-SBI-MS for both cases of noise-

free and noisy data. As observed the results of both algorithms are completely exact in noise-
free data, but the results of BP-CGA is somewhat better in noisy data. The average of BP-
CGA results with no noise are compared with CGA-SBI-MS ones in Table 2. 

 
Table 2. The average results for twenty times running of the algorithm for the planar truss 

Element number Damage ratio BP-CGA CGA-SBI-MS 

11 0.25 0.25 0.31 

21 0 0 0.3 

25 0.15 0.15 0 

29 0 0 0.1 
 
In Table 3, BP-CGA is also compared with MGA+ECBI [22] for 0.15% noise level. BP-

CGA is executed ten times to have a fair comparison. The results are presented in the table. 
Finally the average of the ten outputs is given. As it can be seen, the result of BP-CGA is 
better than that of MGA+ECBI. 
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Table 3. The damage ratios of the 31-bar truss using BP-CGA and the MGA with the ECBI 
considering noise 

Element no. 
31 30 29 28 27 26 25 …  21 20 …  11 … 7 …  1 

Sample no. 
     0.01 0.136   0.062    0.245  0.012    1 
     0 0.156   0.027    0.283  0    2 
     0 0.157   0    0.209  0    3 
     0 0.122   0    0.256  0.023    4 
     0 0.136   0.072    0.225  0.017    5 
     0 0.148   0    0.298  0    6 
     0 0.157   0    0.245  0    7 
     0 0.146   0.032    0.223  0.019    8 
     0 0.148   0    0.273  0    9 
     0 0.133   0.017    0.229  0.015    10 

0 0 0 0 0 0.00
1 0.144 0  0.021 0 0  0.249 0 0.008 0  0 Average 

0 0.015 0.005 0 0.005 0 0.135 0  0.06 0 0  0.285 0 0 0  0 MGA+ECBI 

0 0 0 0 0 0 0.15 0  0 0 0  0.25 0 0 0  0 Actual 
damage 

  
6.3. A prestressed concrete beam 

A fifteen-element prestressed concrete beam is investigated to verify the ability of the 
algorithm. The tendon of the beam is straight passed through the centre of the cross section. 
Thus the prestress force of the tendon acts as an axial force for the beam (no bending 
moment). The structure is shown in Figure 8. The geometrical properties are the same as the 
first case study. Young’s modulus, density and prestress force are equal to 30.2 GPa, 2351.4 

3kg / m  and 100 kg, respectively.  
 

The tendon

100 kgP =

 
Figure 8. A 15-element prestressed concrete beam  

 
In fact the presence of compression force leads to reductions in natural frequencies of the 

structure. To show this, natural frequencies of the beam in both cases with and without axial 
force are given in Table 4. The stiffness matrix of the beam element with an axial force is 
given in Appendix I. The 4th and 12th elements of the beam are assumed to be damaged by the 
extent of 30%. The average results of twenty times running BP-CGA are compared with the 
average results of CGA-SBI-MS algorithm. The results in both cases of no noise and noise 
level of 1% are given in Table 5. 
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Table 4. The frequencies of the concrete beam with and without prestress force  

 Frq. 1 Frq. 2 Frq. 3 Frq. 4 Frq. 5 

No axial force 1.3732 5.4776 12.2688 21.6762 33.6068 

With axial force 1.3372 5.4420 12.2335 21.6411 33.5721 

 
Table 5. The average results for twenty times running for 15-element prestressed concrete beam  

BP-CGA CGA-SBI-MS Element 
number 

Damage 
ratio No noise 1% noise No noise 1% noise 

4 0.3 0.23 0.19 0.31 0.31 

12 0.3 0.35 0.24 0.25 0.16 
 
The results of the BP part of the algorithm for generation of the initial population are shown 

in Figure 9. Also the final result of the algorithm and convergence histories of fitness function 
and error in detection during CGA process are depicted in Figure 10.  
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Figure 9. The first stage results for 15-element prestressed concrete beam (a) without noise (b) 
with 1% noise 

 



S. Gerist, S.S. Naseralavi and E. Salajegheh 

 

316 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element no.

D
am

ag
e 

ra
ti

o

Actual damage

BP-CGA 

CGA-SBI-MS

BP-CGA with 1% noise

CGA-SBI-MS with 1 % noise

 
 (a) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40

Generation no.

Er
ro

r 
in

 d
et

ec
ti

on

With 1% noise

Without noise

 
(b) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40

Generation no.

Fi
tn

es
s 

fu
nc

ti
on

Without noise

With 1% noise
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Figure 10. Solution results of BP-CGA for 15-element prestressed concrete beam: (a) damage 
identification results (b) convergence history of error in detection (c) convergence history of 

fitness function 
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Figure 10(a) shows that BP-CGA detects the damage locations and extents in 1% noise 
level with only a small error. Figures 10(b) and (c) represent the corresponding convergence 
history diagrams. 

 
6.4. Runtime 

For a damage detection algorithm, in addition to accuracy the rapidity is also important. To 
show BP-CGA is fast enough, its invested time is compared with that of CGA-SBI-MS for all 
three previous case studies. The results are given in Table 6. For BP-CGA the runtime in BP 
part (generation of the first population) and CGA part are given separately. As seen, the 
runtime of the proposed algorithm is significantly less than that of CGA-SBI-MS. 

 
Table 6. The runtime of 15-element prestressed concrete beam  

Runtime (sec) 
Algorithm 

Case study one Case study two Case study three 

BP-CGA (BP + CGA = Total time) 2.41+4.02=6.43 6.46+7.03=13.49 1.83+2.99=4.82 

CGA-SBI-MS (Total time) 16.41 43.04 117.06 

 
 

7. CONCLUSION 
 

Damage detection can be formulated as a nonlinear system of equations. In the case of using 
modal data, the number of unknowns of this system of equations is more than the number of 
equations. Thus there are infinite solutions which equalize the responses of damaged structure 
with those of analytical model. Since in the damaged cases most of the elements are healthy, 
the true damage solution has high sparsity. In this paper basis pursuit and continuous genetic 
algorithm are hybridized for damage detection. Basis pursuit is used to produce some sparse 
solutions for the linearized version of damage detection equations. The solutions are 
considered as the initial population for the continuous genetic algorithm. This initial population 
helps genetic algorithm to converge to the true damage solution. The proposed method is 
applied to a cantilever beam, a truss and a prestessed concrete beam. In the case studies both 
states of noisy and noise-free response data are considered. The numerical results represent 
that the method is both accurate and fast comparing to the methods found in the literature. 

 
 

APPENDIX I 
 

In the prestressed concrete beam, the stiffness matrix of the elements, eK , is evaluated as 
follows:  
 i G

e e e= −K K K  (I) 

where i
eK  and G

eK  are respectively the standard and geometric stiffness matrices of the beam 
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which are as below: 
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K  (II) 

 
where P is the axial force of prestressed concrete beam and l is the length of the beam 
element.  
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